the advanced energy [r]evolution

A SUSTAINABLE ENERGY OUTLOOK FOR JAPAN

Summar

1. 2.

EREC EUROPEAN RENEWABLE ENERGY COUNCIL

GREENPEACE

report 2nd edition2011 japan energy scenario

the advanced energy [r]evolution

partners

date September 2011 project manager & lead author Sven Teske, Greenpeace International EREC Arthouros Zervos Greenpeace International

Sven Teske Greenpeace Japan

Greenpeace Japan Hisayo Takada, Junichi Sato

research & co-authors DLR, Institute of Technical Thermodynamics, Department of Systems Analysis and Technology Assessment, Stuttgart, Germany: Dr.Wolfram Krewitt (†),Dr. Thomas Pregger, Dr. Sonja Simon, Dr. Tobias Naegler, Institute for Sustainable Futures, University of Technology, Sydney: Jay Rutovitz, Nicky Ison (Chapter 7).

Regional Partner: ISEP, Institute for Sustainable Energy Policies, 4-54-11 Chuo, Nakano, Tokyo, Japan: Tetsunari Iida, Hironao Matsubara

editors Crispin Aubrey (underlying document) Caroline Chisholm

design & layout onehemisphere, Sweden, www.onehemisphere.se contact sven.teske@greenpeace.org, erec@erec.org

For a full report visit; www.greenpeace.org/japan/Global/japan/pdf/er_report.pdf

The Energy [R]evolution

Greenpeace's Advanced Energy [R]evolution report presents three possible scenarios for Japan's energy future: a Reference scenario to show the business-as-usual path, an Energy [R]evolution scenario detailing a nuclear phase-out and switch to renewables, and an Advanced Energy [R]evolution scenario, created in the aftermath of the nuclear crisis, showing how Japan can make a rapid switch to a safe, renewable future while closing all reactors permanently in 2012.

The 'Reference Scenario' is based on the International Energy Agencies (IEA) World Energy Outlook 2009, while the basic Energy [R]evolution scenario shows predictions from the last Energy [R]evolution scenario (published in 2007) to highlight what was possible in Japan before the March 11 disaster. As we are now in a crisis situation with all of Japan's nuclear plants closing by May 2012, the Advanced Energy [R]evolution scenario includes an emergency plan until 2020, to show that these plants can be closed permanently without negative impact. Both Energy [R]evolution scenarios were calculated by the German Aerospace Center (DLR) with support from the Institute for Sustainable Energy Policies (ISEP).

The Advanced Energy [R]evolution scenario is based on a detailed renewable energy resource assessment from Japan's Ministry of Environment published in April 2011. It has used the technical potentials for wind power (onshore and offshore), hydro power, geothermal energy and solar power provided in this study to illustrate a potential pathway.

In this document, we refer to `metric tons`

front cover image:Wind turbines creating clean energy in Fukushima Japan © STUDIOCASPAR/ISTOCK

image:Rice fields in Kamikatsu, Tokushima, Japan

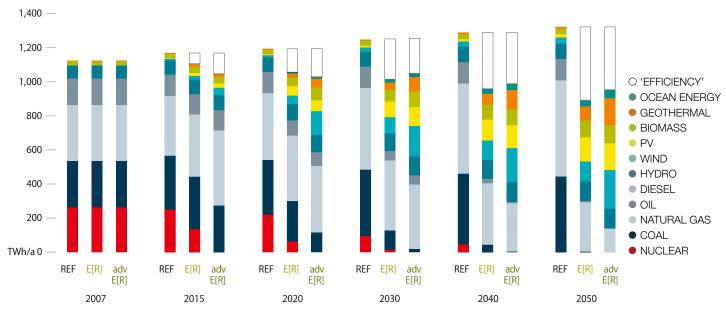
Introduction

Turning a nuclear crisis into an opportunity

The tragic March 11, 2011 earthquake, tsunami and nuclear disaster will be a day remembered in history. Not only because after Chernobyl we were told that a nuclear crisis of this scale could never happen again, but also because the economic, social, and environmental catastrophe created by the triple meltdown at the Fukushima Daiichi has created a turning point in global energy policy.

The Fukushima Daiichi crisis triggered intensive discussions on the safety of nuclear power, and as a first result, Germany, Switzerland, and Italy chose to end their nuclear programmes and to phase out existing reactors. In Japan, public opinion now overwhelmingly favours renewable energy over nuclear, and while 74% of the installed nuclear capacity has been shut down for safety reasons since between March and August (remaining capacity is 12,600MW), a country-wide effort to reduce energy has proven that Japan can survive without them.

Only a dynamic shift in how we generate and use energy will make it possible to Japan's reliance on fundamentally dangerous nuclear technology, minimise the risk of climate change, and create a thriving green economy. To achieve this, Greenpeace is presenting three scenarios: usual path, an Energy [R]evolution scenario detailing a nuclear phase-out and switch to renewables, and an Advanced Energy [R]evolution scenario created in the aftermath of the nuclear crisis showing how Japan can make a rapid switch to a safe, renewable future while closing all reactors permanently in 2012.


If Japan takes the Advanced Energy [R]evolution pathway it is possible to:

- Phase out nuclear power generation by 2012
- Generate 43% of electricity from renewable energy by 2020

• Reduce 25% of greenhouse gas emissions by 2020 (in comparison of 1990)

* In the Advanced Energy [R]evolution scenario, Japan can completely phase out nuclear power in 2012 and still reach its pledge of reducing Greenhouse gas emission by 25% below 1990 levels by 2020 with 24% reductions coming through domestic means, and the remaining sourced through flexible mechanisms internationally.

For a full report visit; www.greenpeace.org/japan/Global/japan/pdf/er_report.pdf

Figure S-1: Japan – development of electricity generation structure under three scenarios

(REFERENCE, ENERGY [R]EVOLUTION AND ADVANCED ENERGY [R]EVOLUTION) ["EFFICIENCY" = REDUCTION COMPARED TO THE REFERENCE SCENARIO]

Energy Efficiency

Figure S-2: A decentralised energy future

1. PHOTOVOLTAIC, SOLAR FACADES WILL BE A DECORATIVE ELEMENT ON OFFICE AND APARTMENT BUILDINGS. PHOTOVOLTAIC SYSTEMS WILL BECOME MORE COMPETITIVE AND IMPROVED DESIGN WILL ENABLE ARCHITECTS TO USE THEM MORE WIDELY. 2. RENOVATION CAN CUT ENERGY CONSUMPTION OF OLD BUILDINGS BY AS MUCH AS 80% -WITH IMPROVED HEAT INSULATION, INSULATED WINDOWS AND MODERN VENTILATION SYSTEMS.

3. SOLAR THERMAL COLLECTORS PRODUCE HOT WATER FOR BOTH THEIR OWN AND NEIGHBOURING BUILDINGS.

As of August 2011, only 12 of Japan's 54 nuclear reactors were online, and by May 2012, all reactors in Japan will be shut down for safety check-ups. To date this has not had a significant effect as Japan has extensive experience in energy efficiency, however, there is still enormous potential for it to do more. Energy efficiency offers some of the simplest, easiest and quickest measures for reducing energy demands, greenhouse gas emissions and cost to end-users.

Along with efficiency, Japan can win the no-nuclear challenge by ramping up renewable generation capacity to take advantage of its abundant solar, wind, geothermal and other renewable energy resources. With its top class technology and business acumen, significant renewable capacity can be installed not only rapidly, but also where it is needed most.

The Advanced Energy [R]evolution emergency plan for a complete nuclear shut down in 2012 follows a three step approach, including stricter efficiency measures, increasing renewable energy capacity - especially wind and solar – and a preliminary increase of the capacity factors of gas power plants between 2012 and 2020. The details of this plan are:

1. Energy Efficiency

Most short term efficiency measures implemented between March and September 2011 need to remain in place. Additionally: 4. EFFICIENT THERMAL POWER (CHP) STATIONS WILL COME IN A VARIETY OF SIZES -FITTING THE CELLAR OF A DETACHED HOUSE OR SUPPLYING WHOLE BUILDING COMPLEXES OR APARTMENT BLOCKS WITH POWER AND WARMTH WITHOUT LOSSES IN TRANSMISSION.

5. CLEAN ELECTRICITY FOR THE CITIES WILL ALSO COME FROM FARTHER AFIELD. OFFSHORE WIND PARKS AND MEGA SOLAR POWER STATIONS HAVE ENORMOUS POTENTIAL.

• The annual total electricity must be reduced by 1.7% per year between 2011 and 2020

• Strict efficiency and load management concepts must be immediately implemented to avoid shortages during peak demand hours as well as total annual demands for all sectors

• Strict mandatory efficiency standards are required

The Advanced Energy [R]evolution scenario takes the Institute for Sustainable Energy Policies' (ISEP) efficiency concept into account, and the load reduction strategy will lead to a reduction of up to 11 GW if:

• Ampere-capacities to households with demands less than 50kW are cut 20%. This will drive a decrease demand of 2.5GW

• A special price for peak-demand periods is introduced for users with demands of 50kW-500kW. This will decrease demand by approximately 2GW

• A price for peak-demand periods is introduced along with a gradual application of supply-demand contracts for users with demands of 500kW-2,000kW. This will decrease demand by approximately 1.5GW

• The application (led by the government in principle) of supply-demand contracts is required for users with demands of more than 2,000kW. This will decrease demand by approximately 5GW

Electricity Generation: 2012-2020

2. Power Generation

Faster uptake of renewables (especially solar photovoltaic and wind power due to their short construction times) and increased capacity factors for existing gas power plants are at the core of the emergency concept.

• Gas: increase average capacity factor of all gas power plants and use them as base load power plants over the coming years. By 2020 the average capacity factor will be back on "standard levels"

• Backup power: Gas power plants will be used to cover dips in flexible generation, and no additional capacity will be needed as current gas power generation capacity is more than enough to cover the entire time period 2012 – 2020

• Wind: increase average annual market from 220 MW in 2010 to 5,000 MW/a between 2012 and 2015 and around 6,000 MW/a between 2016 and 2020

• Photovoltaic: increase average annual market from 990 MW in 2010 up to 5,000 MW/a between 2012 and 2015 and around 6,700 MW/a between 2016 and 2020

In order to implement the needed additional renewable energy capacity, Greenpeace recommends guaranteed access to the grid, as well as a streamlined licensing process be included in feed-in law legislation, and a workable fixed price per kilowatt-hour over 20 years be implemented. This will accelerate the renewable power market in Japan.

Possible environmental impacts by the projects should be carefully assessed and appropriate measures should be taken accordingly.

3. Infrastructure

In order to integrate flexible solar and wind power capacities into the existing grid while transporting more capacity from gas power plants to the load centres of Japan, grid enforcements may be required. Support programs for the expansion of "Smart-Grids" will lead to faster implementation of energy efficiency as well as the more efficient use of renewable electricity.

Equal to the suggested renewable power plant licensing process, clear policy frameworks are needed to enable grid operators to implement needed grid enforcement as fast as possible.

Table S-1: Japan - Overview Energy [R]evolution immediate nuclear energy phase out

NUCLEAR PHASE-OUT 2012: REPLACEMENT STRATEGY

			0.04.0		0045	0.044	0047			
	UNIT	2012	2013	2014	2015	2016	2017	2018	2019	2020
NUCLEAR GENERATION REPLACEMENT	TWh/a	135	135	135	135	121.0	106.9	92.66	78.3	63.8
Increased power generation from gas power plants via higher capacity factors	TWh	98.0	90.8	83.7	76.3	64.1	53.1	42.3	31.7	17.3
Required capacity factor for gas power plants	h/a	7,565	7,335	7,115	6,900	6,780	6,675	6,570	6,465	6,290
Annual demand reduction 1.7% per year (instead of 1% per year)	TWh/a	30	30	30	30	30	30	30	30	30
Wind electricity to replace nuclear	TWh/a	5.8	11.7	17.7	23.5	21.8	18.8	15.3	11.4	12.0
PV electricity to replace nuclear	TWh/a	1.2	2.5	3.8	5.0	5.0	5.1	5.1	5.1	4.5
Total additional Wind + PV generation	TWh/a	7.0	14.2	21.5	28.6	26.8	23.9	20.4	16.5	16.4
NUCLEAR CAPACITY REPLACEMENT	GW	19.3	19.3	19.3	19.3	17.2	15.1	13.1	11.0	8.9
Annual Wind market	GW	5.0	5.0	5.0	5.0	6.1	6.1	6.1	6.1	6.1
Total Wind capacity	GW	8.3	13.3	18.3	23.3	29.4	35.6	41.7	47.9	56.0
Annual PV market	GW	5.0	5.0	5.0	5.0	6.7	6.7	6.7	6.8	6.8
Total PV capacity	GW	8.9	13.9	18.9	23.9	30.6	37.3	44.1	50.8	57.6
Total additional Wind + PV capacity	GW	10.0	10.0	10.0	10.0	12.9	12.9	12.9	12.9	12.9
Annual CO2 emissions million	n T CO ₂ /a	1,267	1,261	1,254	1,247	1,171	1,095	1,018	942	866
CO2 emissions compared to 1990 levels	%	111%	110%	110%	109%	102%	96%	89%	82%	76%

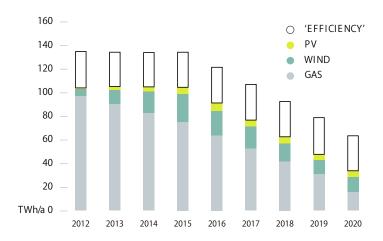

Electricity Generation: 2012-2020

Figure S-3 shows the emergency plan for an immediate nuclear phase out compared to a "gradual phase out" of nuclear power by 2030.

As opposed to figure S-1 on page 3, the power generation calculations shown in figure S-3 only represent the amount of wind, solar and gas electricity needed to replace nuclear electricity towards a complete phaseout.

Figure S-3: Japan - emergency plan: nuclear generation replacement strategy

image A worker enters a turbine tower for maintenance.

Table S-2: summary: power generation and installed capacity development between 2012 and 2020

INSTALLED CAPACITY IN GW - EXCLUDING CHP	2007	2012	2013	2014	2015	2016	2017	2018	2019	2020
Coal	49.6	48.1	47.3	46.5	45.7	40.4	35.2	29.9	24.6	19.3
Gas	54.7	58.0	59.7	61.3	63.0	62.2	61.5	60.8	60.1	59.4
Oil	46.4	46.2	46.0	45.9	45.8	44.4	43.1	41.7	40.4	39.0
Diesel	3.2	2.9	2.8	2.6	2.5	2.4	2.3	2.2	2.1	2.0
Nuclear	48.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Biomass	3.1	3.7	4.1	4.4	4.7	4.8	4.9	5.0	5.1	5.2
Hydro	19.0	20.0	20.5	21.0	21.5	22.1	22.7	23.3	23.9	24.5
Wind	1.5	8.3	13.3	18.3	23.3	29.4	35.6	41.7	47.9	56.0
Photovoltaics	1.7	8.9	13.9	18.9	23.9	30.6	37.3	44.1	50.8	57.0
Geothermal	0.6	1.4	1.9	2.3	2.8	3.6	4.4	5.3	6.1	6.9
Ocean Energy	0.0	0.1	0.2	0.2	0.3	0.7	1.2	1.7	2.1	2.6
ELECTRICITY GENERATION [TWH] - EXCLUDING CHP										
Coal	272	273	274	274	274	243	211	179	148	116
Gas	328	439	438	436	434	422	411	400	389	374
Oil	153	152	152	152	115	107	99	92	85	78
Diesel	3	3	3	3	3	2	2	2	2	2
Nuclear	264	0	0	0	0	0	0	0	0	0
Biomass	23	28	30	33	35	36	36	37	37	38
Hydro	74	79	82	85	88	91	93	96	98	101
Wind	3	15	24	34	44	59	76	94	114	140
Photovoltaics	2	10	15	20	26	34	41	49	56	64
Geothermal	3	8	11	14	17	23	29	35	42	49
Ocean Energy	0	0	1	1	1	3	4	6	7	9
Final electricity consumption Advanced E[R]	1,010	960	950	941	931	928	925	923	920	917

GREENPEACE

Economic [R]ecovery

Following the implementation of the emergency plan between now and 2020, the Advanced Energy [R]evolution scenario will continue to make huge contributions to Japan's economy, employment sector, energy independence and greenhouse gas emission reduction targets by:

1. Continuing to drive the country towards its energy efficiency potential by ensuring that primary energy demand decreases from the current 21,767 PJ/a (2007) to 11,114 PJ/a in 2050.

2. Encouraging increasing use of electric drives in the transport sector, and ensuring that hydrogen produced by electrolysis from excess renewable electricity plays a much bigger role. After 2020, the final energy share of electric vehicles on the road will increase to 11% by 2020, and 49% by 2050.

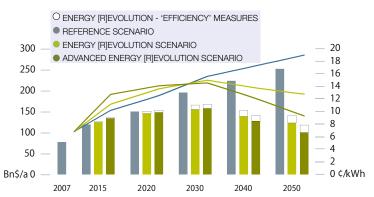
3. Enabling the increased use of combined heat and power generation (CHP) to improve the supply system's energy conversion efficiency, increasingly using natural gas and biomass.

4. Encouraging pioneering use of renewable energy. By 2020, 43% of electricity will be produced from renewable sources, increasing to 85% by 2050. A capacity of 277 GW will produce 813 TWh/a of renewable electricity in 2050.

5. Enabling the contribution of renewables in the heat supply sector to increase to 22% by 2020 and 71% by 2050. Fossil fuels will be increasingly replaced by more efficient modern technologies, in particular biomass, solar collectors and geothermal.

6. Exploiting existing large efficiency potentials in the transport sector by a modal shift from road to rail, and by using much lighter and smaller vehicles.

7. Ensuring that by 2050, 64% of primary energy demand will be covered by renewable energy sources.


Economic [R]evolution

Renewable energy will initially cost more to implement than existing fossil fuels. The slightly higher electricity generation costs under the Advanced Energy [R]evolution scenario will be compensated for, however, by reduced demand for fuels in other sectors such as heating and transport. Assuming average costs of 3 cents/kWh for implementing energy efficiency measures, the additional cost for electricity supply under the Advanced Energy [R]evolution scenario will amount to a maximum of \$100 million/a in 2015. These additional costs, which represent society's investment in an environmentally benign, safe and economic energy supply, continue to decrease after 2015.

Future Fuel Cost

It is assumed that average crude oil prices will increase from around \$80 per barrel in 2009 to \$130 per barrel in 2020, and continue to rise to \$150 per barrel in 2050. Natural gas import prices are expected to increase by a factor of four between 2008 and 2050, while coal prices will nearly double, reaching \$360 per tonne in 2050. A CO2 'price adder' is applied, which rises from \$20 per tonne of CO2 in 2020 to \$50 per tonne in 2050.

Figure S-5 : Japan - development of total electricity supply costs & development of specific electricity generation costs under three scenarios

Figure S-4: Japan - investment shares - Reference versus Advanced Energy [R]evolution scenario

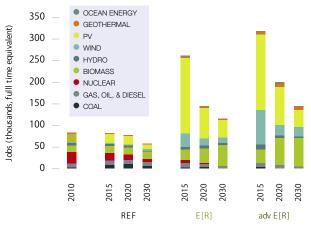
GREENPEACE

[r]evolution SUSTAINABLE ENERGY OUTLOOK FOR JAPAN

Employment, Policy and Emissions

Employment

Energy sector jobs are set to increase significantly by 2015 under the Advanced Energy [R]evolution scenario, with only a slight increase in the Reference scenario. In 2010, there are 81,500 electricity sector jobs in Japan.


• In the Reference scenario, jobs stay constant to 2015, and then fall by 5% by 2020 (a loss of 4,800 jobs relative to 2010), and then decrease further to 57,000 jobs by 2030

• In the Advanced scenario, jobs almost quadruple to 326,000 jobs in 2015 (244,000 additional jobs), then drop back to 198,000 jobs in 2020, and 144,000 jobs in 2030, a 76% increase from 2010

 Solar PV shows particularly strong growth, reaching a peak of more than 170,000 jobs in 2015 in both the [R]evolution scenarios

These calculations do not include the jobs associated with decommissioning nuclear power stations, which would be significant in all scenarios. Rapidly moving towards a renewable energy future in Japan will drive enormous job growth and economic recovery as a huge new green industry is formed.

Figure S-6: jobs by technology under three scenarios

Policy changes

To make the Energy [R]evolution real, Greenpeace demands that the following policies and actions are implemented in the energy sector:

1. Phase out all subsidies for fossil fuels and nuclear energy.

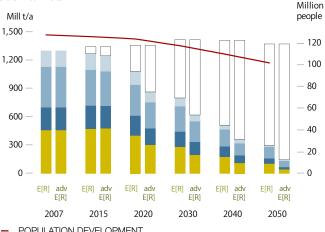
2. Internalise the external (social and environmental) costs of energy production through 'cap and trade' emissions trading.

3. Mandate strict efficiency standards for all energy consuming appliances, buildings and vehicles.

4. Establish legally binding targets for renewable energy and combined heat and power generation.

5. Reform the electricity markets by guaranteeing priority access to the grid for renewable power generators, and by separating electricity utilities from the grid.

6. Provide defined and stable returns for investors, for example by feed-in tariff programmes.


7. Implement better labelling and disclosure mechanisms to provide more environmental product information.

8. Increase research and development budgets for renewable energy and energy efficiency.

Development of CO2 emissions

In the Advanced Energy [R]evolution scenario, Japan can completely phase out nuclear power in 2012 and still reach its pledge of reducing greenhouse gas emission by 25% below 1990 levels by 2020 with 24% reductions coming through domestic means, and the remaining sourced through flexible mechanisms internationally.

Figure S-7: japan - development of CO2 emissions by sector under both Energy [R]evolution scenarios

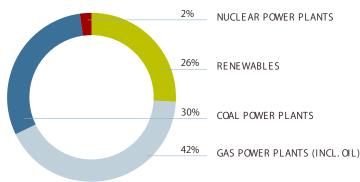
POPULATION DEVELOPMENT

- SAVINGS FROM 'EFFICIENCY' & RENEWABLES \bigcirc
- OTHER SECTORS
- INDUSTRY
- TRANSPORT
- POWER GENERATION & CHP

Energy Shift Now

Energy Shift Now

Japan's response to the Fukushima nuclear disaster and the threat of climate change demands nothing short of an Energy [R]evolution.


The Advanced Energy [R]evolution scenario provides a robust short-term emergency plan to ensure Japan has enough generation capacity to listen to the demands of its people and switch off its nuclear reactors permanently in 2012. It also provides a long-term roadmap that will boost jobs, economic growth and energy independence, ensures that Japan will never again be at risk of a catastrophic nuclear disaster, and provides its people with a clean and sustainable future.

The global renewable energy market

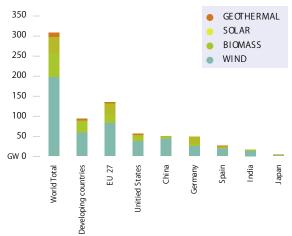
The bright future for renewable energy is already underway. The global market for renewable energy is booming internationally. Between 2005 and 2010, installed capacity of wind power grew by 255% globally, while solar photovoltaic grew by over 1000%. Between 2000 and 2010, 26% of all new power plants worldwide were renewables – mainly wind. Nuclear remains irrelevant on a global scale with just 2% of the global market share.

Figure S-8: power plant market shares

global power plant market shares 2000-2010

*If China is excluded, the share for coal power plants drops from 30% to 10% in the same period.

Huge renewable energy potential


According to the Research Association for Solar Power, the energy in the sunshine that reaches the earth can satisfy current global demand 2,850 times over. Only a small percentage of that potential is technically accessible, however, even this fraction is enough to provide almost six times more power than the world currently consumes.

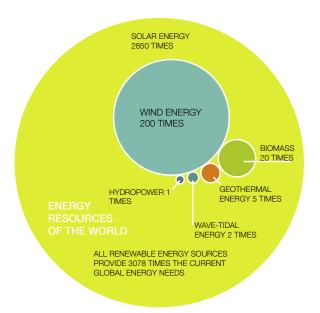

image The "Energy Shift Parade" through Shibuya on the three-month anniversary of the East Japan earthquake disaster and the start of the Fukushima Daiichi nuclear crisis.

Figure S-9: renewable power capacities, developing countries, EU and top six countries, 2010 (not including hydropower)

Figure S-10: energy resources of the world

A SUSTAINABLE ENERGY OUTLOOK FOR JAPAN

Japan: Advanced Energy [R]evolution scenario

Japan: electricity generation

Japan: electricity generation								
TWh/a Power plants Coal	2007 1,123 272	2015 1,036 274	2020 970 116	2030 962 19	2040 883 5	2050 819 0		
Lignite Gas Oil Diesel	328 153 3	0 434 115 3	0 374 78 2	0 350 54 2	0 251 9 1	108 0 1		
Nuclear Biomass Hydro Wind	264 23 74 3	3 0 35 88 44	0 38 101 140	0 39 110 179	0 39 114 200	0 39 115 228 156		
PV Geothermal Solar thermal power plants Ocean energy	264 23 74 0 30 0	26 17 0 1	64 49 0 9	179 111 80 0 19	200 135 93 0 35	156 120 1 50		
Combined heat & power production Coal Lignite			58 0 18	87 0	107 0 0	138 0 0		
Gas Oil Biomass Geothermal	000000000000000000000000000000000000000	10 0 8 0 2 0 0	18 0 38 2 0	28 0 52	31 0 56	0 31 69 35 4		
Hydrogen CHP by producer Main activity producers Autoproducers	Ō O O	0 2 8	0 26 32	6 1 34 53	18 2 44 63	65 73		
Total generation	1,123 757 272	1,046 834	1,028 587		990 297	957 140		
Fossil [®] Coal Lignite	272 328	274 0 442	116 0 391	1,049 452 19 0 3 <u>7</u> 8	297 0 282	139		
Gās Oil Diesel	153	115 3 0	78 78 2	54 2 0	9 1	0 1		
Nuclear Hydrogen Renewables	264 0 1 <u>03</u>	213 88	440	1 596	0 2 690	0 4 813 115		
Hydro Wind PV	/4	44	101 140 64	179 111	114 200 135 95	115 228 156 108 155		
Geothermal Solar thermal	103 74 3 23 3 0 0	26 37 17 0 1	76 51 9	91 86 0	111	1		
Ocean energy Distribution losses			9 0	19 47	0 35 46	50 43		
Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	51 62 0 1,010	0 0 931	0 917	52 0 950	46 28 909	16 17 880		
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	3 0.2%	71 6.7%	213 20.7%	309 29.4%	370 37.4%	434 45.4%		
RES share 'Efficiency' savings (compared to Ref.)	9.1% 0	20.3% 126	42.8% 210	56.8% 282	69.8% 401	85.0% 513		
Japan: heat supply								
PJ/a District heating plants	2007 25	2015 42	2020 124	2030	2040 166	2050 134		
Fossil fuels Biomass	19 7 0	29 12 0	124 68 49	163 68 72	166 42 71	20 59 9		
Solar collectors Geothermal	0	0	6	21	46	46		
Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen)	000000000000000000000000000000000000000	39 26 13 1 0	249 62 165 21 1	359 97 203 56 4	479 104 209 159 7	616 89 233 283 11		
Direct heating ₁₎ Fossil fuels	4,678 4,555 92 23	4,683 4,376	4,153 3,380 234	3,612 2,482 255	2,905 1,640 245	2,188 730 216		
Biomass Solar collectors Geothermal₂ Hydrogen	23	199 75 0	231 307 0	383 491 0	415 591 14	489 669 83		
Total heat supply Fossil fuels Biomass	4,703 4,573 99	4,764 4,431 158	4,526 3,510 448	4,133 2,647	3,550 1,786	2,937 839		
Solar collectors Geothermala Fuel cell (hydrogen)	23 0	190 99 76 0	232 334 1	2,530 385 568 4	525 421 796 21	508 499 998 94		
RES share (including RES electricity) (Efficiency' equiper (compared to Bef.)	2.8% 0	7.0% 382	22.4% 754	35.9% 1,179	49.5% 1,752	70.9% 2,291		
Efficiency' savings (compared to Ref.) 1) including cooling. 2) including heat pumps	0	502	7.54	1,175	1,752	2,271		
Japan: co ₂ emissions MILL t/a	2007	2015	2020	2030	2040	2050		
Condensation power plants	460 220	479 221	301 93	194 16	107 4	42 0 0		
Lignite Gas Oil Diesel	0 143 96 2	185 72 1	158 49 1	0 144 33 1	0 97 6 1	41 0 0		
Combined heat & power production Coal	0 0 0 0	40	9	13 0 0	14 0 0	12 0		
Lignite Gas Oil	000	0 0 4 0	0 9 0	0 13 0	0 14 0	12 0 12 0		
CO ₂ emissions power generation (incl. CHP public) Coal	460 220	483 221	309 93	207 16	121	54		
Lignite Gas Oil & diesel	220 0 143 98	189 73	0 166 50	10 157 34	0 111 6	- 0 0 53 1		
CO ₂ emissions by sector	1,301 114%	1,247 109%		620 54%	361 32%	147		
% of 1990 emissions Industry Other sectors	210 170	109% 195 165	158 111	129 129	52% 94 37 83	13% 51 13		
Transport Power generation (incl. CHP public) Other conversion	244 460 217	237 480 170	176 304 117	137 199 89 117	113 34	23 46 15 102		
Population (Mill.) CO ₂ emissions per capita (t/capita)	127.4 10.2	126 9.9	124 7.0	5.3	110 3.3	102		

GREENPEACE

Japan: installed capacity

GW

Non energy use Oil Gas Coal

GW	2007	2015	2020	2030	2040	2050	
Power plants	226 50	233 46	272	310	315	315	
Coal Lignite	50 0 55	.0	272 19 0 59	310 3.2 0 62	315 1.0 60 18 1.0 5.6	315 0 _0	
Gas Oil	25 46	63 46	39	.36	18	54 0.4 0.8 0.3	
Diesel Nuclear	46 3.2 48	46 2.5 0 4.7	2.0 0.0 5.2	36 1.5 _ 0	1.0	0.8	
Biomass Hydro	31	4.7 21 23	5.2 24	5.4 26 64)/		
Wind PV	19 1.5 0.01	23 24	24 56 57	64	68 112	71 125	
Geothermal	0.01 0.6 0	2.8 0 0.3	6.9	96 11 0	13	16	
Solar thermal power plants Ocean energy	ŏ	0.3	2.6	5.4	10 10	27 71 125 16 0 14	
Combined heat & power production	0	1.8	12	16	20		
Coal Lignite	0000000	0 0 1.4	Ō	8	0 0 7 1	28 0 10 12 5.6 0.7	
Lignite Gas Oil Biomass	0	1.4	3.4 0	6.1 0	Ó	10	
Geothermal	8	0.4 0.4 0	8.1 0.4	8.8 1.1	9.4 3.0	12 5 6	
Hydrogen	Ō	Ō	0	0.2	0.4	0.7	
CHP by producer	0	0.5	67	73	8.8	13	
Main activity producers Autoproducers	00	0.5 1.4	6.7 5.3	7.3 9.0	8.8 11	13 15	
Total generation	226	235	284	327	335 87	343 65 0	
Fossil Çoal	226 154 50	235 158 46	123 19	108 3.2	1.0	02	
Lignite Gas	0 55	0 64	0 63	-0 68	0 67	64	
Oil Diesel	55 46 3.2	46 2.5	63 39 2.0	36 1.5	18 1.0	64 0.4 0.8	
Nuclear Hydrogen	48	0	0.0	02	0 0.4	0.7	
Renewables Hydro	24 19	46 2.5 0 76 21	161 24	0.2 218 26	248	277	
Wind PV		23	<u>5</u> 6	64 96	68 112	71 125	
Biomass	3.1	5.2	13 7.4	14	15	18	
Geothermal Solar thermal	0.01 3.1 0.6 0	5.2 2.8 0 0.3	0	14 12 0	16 0,1	18 22 0.3	
Ocean energy			2.6	5.4	10	14	
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	1.5 0.7%	47 20.0%	116 40.7%	165 50.6%	190 56.7%	210 61.4%	
RES share	10.7%	32.5%	56.6%	66.7%	74.0%	80.8%	
Japan: primary energ	y dem	and					
PJ/a	2007	2015	2020	2030	2040	2050	
Total Fossil	21,767 18, <u>162</u>	19,484 17,650 3,391 0	17,534 13,280	15,774 10,333 336	13,264 7,112 109	11,114 4,0 <u>15</u>	
Hard coal Lignite	4,782	3,391	1,505	336	''109 0	27	
Natural gas Crude oil	3,68Ŏ 9,699	5,251 9,008	4,979 6,796	4,653 5,343	3,311 3,692	1,73Ž 2,256	
Nuclear	2,879	9,000	0,750	0,545		2,230	
Renewables Hydro	726	1,834 317	4,254 364	5,441 396	0 6,152 410 720	7,098 414	
Wind Solar	_9	157	504	644	720	1 821	
Biomass	310	196 663	470 1,479 1,404	1,604	1 611	1,628	
Geothermal Ocean Energy	118	499	., 32	1,942	2,358	2,972	
RES share 'Efficiency' savings (compared to Re	f.) 3.3%	9.4% 3,149	24.3% 5,242	34.5% 6,793	2,358 126 46.4% 8,873	-7180 63.9% 10,248	
Japan: final energy de	emand	ł					
PJ/a	2007	2015	2020	2030	2040	2050	
Total (incl. non-energy use)	14,311 12,541 3,450 3,382 0	14,086	12,950	11,941	10,308	8,597	
Iotal (energy use) Transport	3,450	14,086 12,316 3,514 3,292	11,181 3,020	11,941 10,171 2,693 1,853 62	10,308 8,538 2,086 1,103	6,828 1, <u>391</u>	
Oil products Natural gas	3,382 0 0	3,292	2,410		00	267	
Biofuels Electricity	0 68	1/4	314	327	336 550	346 676	
RES electricity Hydrogen	6	91 19 0	258 110 0	435 247 16	550 384 32	676 575 37	
RES share Transport	0.2%	4.1%	14.0%	21.7%	35.5%	68.5%	
Industry Electricity	4,154 1,219 111	4,028 1,166 237	3,743 1,031 442	3,563 1,015 576 222	3,198 923 644	2,847 875 744	
RES electricity District heat	'111	'237 31	',031 442 134	',576	644 264	744 341	
RES district heat		8	86	145 123	207	295	
Coal Oil products	788 1, <u>2</u> 39	587 1, <u>153</u>	973	824	45 585	_10 208	
Gas Solar	/93	915 27	942 93	905 152 157	736 193	522 273	
Biomass and waste Geothermal	114 0	1 <u>22</u> 29	156 98	157 165	161 276	150 381	
Hydrogen RES share Industry	0 5.4%	0 10.5%	23.4%	165 0 33.6%	14 46.6%	87 67.3%	
Other Sectors							
Electricity	4,937 2,350 215 24	4,774 2,093 425 48	4,418 2,007 860 237	3,915 1,936 1,100 330	3,254 1,734 1,210 353 271	2,589 1,477 1,255 397	
RES electricity District heat	215 24	425 48	237	1,100	353	1,233	
RES district heat		14	141	199	. 0	352	
Oil products Gas	25 1,450 1,055	1,384 1,0 <u>86</u>	714 999	735	120 440	26 137	
Solar Biomass and waste	25	75 45 35	148 144	231 150	240 130	234 103	
Geothermal RES share Other Sectors	9 5.1%	35 12.5%	168 33.1%	228 48.7%	130 238 64.2%	215 83.4%	
Total RES							
RES share	486 3.9%	1,160 9.4%	2,761 24.7%	3,687 36.2%	4,321 50.6%	5,030 73.7%	
Maria and a second a second a	4 770	4 770	4 770	4 770	4 770	4 330	

1,770 1,770 1,737 1,737 16 16 16 16

2007 2015

2020

2030

2040

2050

1,770 1,737 16 16

1,770 1,770 1,770 1,737 1,737 1,737 16 16 16 16 16 16